Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability.
نویسندگان
چکیده
Dendrites are the fundamental determinant of neuronal wiring. Consequently dendritic defects are associated with numerous neurological diseases and mental retardation. Neuronal activity can have profound effects on dendritic structure, but the mechanisms controlling distinct aspects of dendritic architecture are not fully understood. We use the Drosophila genetic model system to test the effects of altered intrinsic excitability on postembryonic dendritic architecture development. Targeted dominant negative knock-downs of potassium channel subunits allow for selectively increasing the intrinsic excitability of a selected subset of motoneurons, whereas targeted expression of a genetically modified noninactivating potassium channel decrease intrinsic excitability in vivo. Both manipulations cause significant dendritic overgrowth, but by different mechanisms. Increased excitability causes increased dendritic branch formation, whereas decreased excitability causes increased dendritic branch elongation. Therefore dendritic branching and branch elongation are controlled by separate mechanisms that can be addressed selectively in vivo by different manipulations of neuronal intrinsic excitability.
منابع مشابه
Remodeling of membrane properties and dendritic architecture accompanies the postembryonic conversion of a slow into a fast motoneuron.
The postembryonic acquisition of behavior requires alterations in neuronal circuitry, which ultimately must be understood as specific changes in neuronal structure, membrane properties, and synaptic connectivity. This study addresses this goal by describing the postembryonic remodeling of the excitability and dendritic morphology of an identified motoneuron, MN5, which during the metamorphosis ...
متن کاملTemporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development.
Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-depende...
متن کاملThe tight relationship between asymmetric signaling and locational excitability in motoneuron dendrites
Spinal motoneurons possess large, highly branching dendritic structures that contain thousands of synaptic contacts and various voltage-gated ion channels (VGICs). Research has indicated that dendritic arborization and cable properties provide the basis for foundational dendritic processing, which is characterized by direction-dependent signal propagation and location-dependent channel activati...
متن کاملBranching structure of motoneuron stem dendrites: a study of neck muscle motoneurons intracellularly stained with horseradish peroxidase in the cat.
The branching structure of the stem dendrites of five motoneurons innervating the dorsal neck muscles, biventer cervicis and complexus, was examined in the adult cat using intracellular staining techniques. The dendritic tree of each motoneuron was reconstructed completely and then dissected into several parts, each corresponding to the branches. Twenty-five of the 49 stem dendrites examined ha...
متن کاملA computational model of dendrite elongation and branching based on MAP2 phosphorylation.
We introduce a new computational model of dendritic development in neurons. In contrast to previous models, our model explicitly includes cellular mechanisms involved in dendritic development. It is based on recent experimental data which indicates that the phosphorylation state of microtubule-associated protein 2 (MAP2) may play a key role in controlling dendritic elongation and branching (Aud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2008